Virtual Classes of Character Stacks

Jesse Vogel

Leiden University
3 March, 2022

Representation varieties

- $M=$ connected closed manifold
- $\pi_{1}(M)$ = fundamental group
- G = algebraic group over k
G-representation variety of M

$$
R_{G}(M)=\operatorname{Hom}\left(\pi_{1}(M), G\right)
$$

Note: G acts on $R_{G}(M)$ by conjugation $\quad\left(g \cdot \rho=g \rho g^{-1}\right)$

Note: G acts on $R_{G}(M)$ by conjugation $\left(g \cdot \rho=g \rho g^{-1}\right)$

1. GIT quotient, $\operatorname{Spec}(R) / / G=\operatorname{Spec}\left(R^{G}\right)$

Character variety $\quad \chi_{G}(M)=R_{G}(M) / / G$

Note: G acts on $R_{G}(M)$ by conjugation $\left(g \cdot \rho=g \rho g^{-1}\right)$

1. GIT quotient, $\operatorname{Spec}(R) / / G=\operatorname{Spec}\left(R^{G}\right)$

Character variety $\quad \chi_{G}(M)=R_{G}(M) / / G$

Non-Abelian Hodge Theory: for smooth complex projective curve C, and $G=\mathrm{GL}_{n}(\mathbb{C})$,

2. Stacky quotient

Character stack $\quad \mathfrak{X}_{G}(M)=\left[R_{G}(M) / G\right]$
2. Stacky quotient

Character stack $\quad \mathfrak{X}_{G}(M)=\left[R_{G}(M) / G\right]$

- Sets of points \sim groupoids of points

2. Stacky quotient

$$
\text { Character stack } \quad \mathfrak{X}_{G}(M)=\left[R_{G}(M) / G\right]
$$

- Sets of points \sim groupoids of points
- Definition quotient stack

$$
[X / G](T)=\left\{\begin{array}{l}
P \xrightarrow{G \text {-equiv }} X \\
\downarrow \pi \\
T
\end{array}\right\}
$$

2. Stacky quotient

$$
\text { Character stack } \quad \mathfrak{X}_{G}(M)=\left[R_{G}(M) / G\right]
$$

- Sets of points \sim groupoids of points
- Definition quotient stack

$$
[X / G](T)=\left\{\begin{array}{l}
P \xrightarrow{G \text {-equiv }} X \\
\downarrow \pi \\
T
\end{array}\right\}
$$

- G-equivariant geometry

Study by additive/motivic invariants:

$$
\mu: \operatorname{Var}_{k}\left(\boldsymbol{\operatorname { o r }} \mathbf{S t c k}_{k}\right) \rightarrow R
$$

such that $\mu(X)=\mu(Z)+\mu(X \backslash Z)$ for closed $Z \subset X$

Study by additive/motivic invariants:

$$
\mu: \operatorname{Var}_{k}\left(\boldsymbol{\operatorname { o r }} \mathbf{S t c k}_{k}\right) \rightarrow R
$$

such that $\mu(X)=\mu(Z)+\mu(X \backslash Z)$ for closed $Z \subset X$

Examples

- Euler characteristic $\chi(X) \in \mathbb{Z}$,
- Points over finite fields $\# X\left(\mathbb{F}_{q}\right) \in \mathbb{Z}$
- Deligne-Hodge polynomial

$$
e(X)=\sum_{k, p, q}(-1)^{k} h_{c}^{k ; p, q}(X) u^{p} v^{q} \in \mathbb{Z}[u, v] .
$$

Grothendieck ring of varieties / stacks

$$
K\left(\mathbf{V a r}_{k}\right)=\bigoplus_{\text {isom. cl. }[X]} \mathbb{Z} \cdot[X] / \sim
$$

- (scissor) $[X]=[Z]+[X \backslash Z]$ for closed $Z \subset X$
- (multiplication) $[X] \cdot[Y]=\left[X \times_{k} Y\right]$
- $[\varnothing]=0$ and $[\operatorname{Spec}(k)]=1$

Grothendieck ring of varieties / stacks

$$
K\left(\mathbf{V a r}_{k}\right)=\bigoplus_{\text {isom. cl. }[X]} \mathbb{Z} \cdot[X] / \sim
$$

- (scissor) $[X]=[Z]+[X \backslash Z]$ for closed $Z \subset X$
- (multiplication) $[X] \cdot[Y]=\left[X \times_{k} Y\right]$
- $[\varnothing]=0$ and $[\operatorname{Spec}(k)]=1$

Example
 $$
\mathrm{SL}_{2}(k)=\left\{\left(\begin{array}{ll} a & b \\ c & d \end{array}\right): a d-b c=1\right\}
$$

Example

$$
\mathrm{SL}_{2}(k)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a d-b c=1\right\}
$$

$\left[\mathrm{SL}_{2}(k)\right]=\{a=0\} \quad+\quad\{a \neq 0\}$

Example $\quad \mathrm{SL}_{2}(k)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a d-b c=1\right\}$

$$
\begin{aligned}
{\left[\mathrm{SL}_{2}(k)\right] } & = \\
& =\{a=0\} \\
& =\{d \in k\} \cdot\left\{c=-b^{-1}\right\}+\{d=(1+b c) / a\}
\end{aligned}
$$

Example $\quad \mathrm{SL}_{2}(k)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a d-b c=1\right\}$

$$
\left.\left.\begin{array}{rlcc}
{\left[\mathrm{SL}_{2}(k)\right]} & = & \{a=0\} & +
\end{array}\right)\{a \neq 0\}\right\}
$$

First goal: compute class of $\left[R_{G}\left(\Sigma_{g}\right)\right]$ in $K\left(\operatorname{Var}_{k}\right)$

Later: compute class of $\left[\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right]$
Idea: cut manifold in pieces and 'compute invariant piecewise'

Using Topological Quantum Field Theory
$Z: \mathbf{B d p}_{n} \rightarrow R$-Mod

Category of (pointed) bordisms Edp ${ }_{n}$

- Objects (M, A)
e.g. $\bigcirc \varnothing$
- Morphisms (W, A)

- Composition: glue along common boundary

$$
\text { egg. } \quad(1) \circ \infty
$$

Define TQFT $Z: \mathbf{B d p}_{2} \rightarrow K\left(\mathbf{V a r}_{k}\right)$ - Mod

$$
0 \longrightarrow 0 \longleftrightarrow 0
$$

Define TQFT $Z: \mathbf{B d p}_{2} \rightarrow K\left(\mathbf{V a r}_{k}\right)$-Mod

Define TQFT $Z: \mathbf{B d p}_{2} \rightarrow K\left(\mathbf{V a r}_{k}\right)$ - $\mathbf{M o d}$

$$
\begin{aligned}
& 0 \longrightarrow \frac{0}{\prod_{R_{G}(-)}} \longleftarrow<0 \\
& R_{G}(\mathrm{O}) \longleftarrow R_{G}(0-\mathrm{B}) \longrightarrow R_{G}(\mathrm{O}) \\
& \rfloor K(\mathbf{V a r} /-) \\
& \left.\left.K\left(\operatorname{Var} / R_{G}(\}\right)\right) \xrightarrow{\text { pullback }} K\left(\operatorname{Var} / R_{G}((\})\right) \xrightarrow{\text { compose }} K\left(\operatorname{Var} / R_{G}(\}\right)\right)
\end{aligned}
$$

$Z: \mathbf{B d p}_{n} \rightarrow K\left(\mathbf{V a r}_{k}\right)$-Mod

Closed surface $\Sigma_{g}: \varnothing \rightarrow \varnothing$, so by (lax) monoidality

$$
Z\left(\Sigma_{g}\right): Z(\varnothing) \rightarrow Z(\varnothing)
$$

For us, $\quad Z\left(\Sigma_{g}\right)(1)=\left[R_{G}\left(\Sigma_{g}\right)\right] \in K\left(\mathbf{V a r}_{k}\right)$

$$
\left[R_{G}\left(\Sigma_{g}\right)\right]=\frac{1}{[G]^{g}} Z\left(\odot_{j}\right) \circ Z\left(\left(\sigma^{-1}\right)^{g} \circ Z(\mathrm{D})(1)\right.
$$

and it remains to compute $Z(0-1)$

$$
\left[R_{G}\left(\Sigma_{g}\right)\right]=\frac{1}{[G]^{g}} Z(\mathrm{G}) \circ Z\left(\left(\sigma^{-1}\right)^{g} \circ Z(\mathrm{O})(1)\right.
$$

and it remains to compute $Z(0-13)$

- Current results: $\mathrm{SL}_{2}, \mathbb{T}_{n}$ and \mathbb{U}_{n} for $n=2,3,4$ (and 5)

$$
\left[R_{G}\left(\Sigma_{g}\right)\right]=\frac{1}{[G]^{g}} Z\left(Q_{j}\right) \circ Z\left((\sigma-1)^{g} \circ Z(\mathbb{O})(1)\right.
$$

and it remains to compute $Z(0-1)$

- Current results: $\mathrm{SL}_{2}, \mathbb{T}_{n}$ and \mathbb{U}_{n} for $n=2,3,4$ (and 5)
- Generalizations: can be extended to parabolic settings, non-orientable surfaces

Stacky TQFT

$$
\begin{aligned}
& \text { Replace } \\
& K\left(\mathbf{V a r}_{k}\right) \longmapsto K\left(\mathbf{S t c k}_{\mathbf{B G}}\right) \\
& R_{G}(X) \longmapsto \mathfrak{X}_{G}(X) \\
& \text { to obtain } \quad \mathcal{Z}: \mathbf{B d p}_{n} \rightarrow K\left(\text { Stck }_{\mathrm{BG}}\right) \text { - } \text { Mod } \\
& \left.\left[\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right]=\frac{1}{[G / G]^{g}} \mathcal{Z}(1\}\right) \circ \mathcal{Z}\left(\left(\boldsymbol{Q}^{\prime}\right)^{g} \circ \mathcal{Z}(D)(1)\right.
\end{aligned}
$$

$$
\mathrm{AGL}_{1}(k)=\left\{\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\right\}
$$

Theorem [González-Prieto, Hablicsek, Vogel, arXiv:2201.08699] The virtual class of the character stack $\left[\mathfrak{X}_{\text {AGL }_{1}(k)}\left(\Sigma_{g}\right)\right]$ equals

$$
\begin{aligned}
\mathbf{B G}+ & \left((q-1)^{2 g}-1\right)\left[\mathbb{A}_{k}^{1} / G\right]+\frac{q^{2 g}-1}{q-1}\left[\mathbb{G}_{m} / G\right] \\
& +\frac{\left(q^{2 g-2}-1\right)\left((q-1)^{2 g}-1\right)}{q-1}\left[\mathrm{AGL}_{1}(k) / G\right]
\end{aligned}
$$

Obtain $\left[R_{\mathrm{AGL}_{1}(k)}\left(\Sigma_{g}\right)\right]$ from $\left[\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right]$ by 'forgetting G-action'

$$
K\left(\mathbf{S t c k}_{\mathrm{BG}}\right) \rightarrow K\left(\mathbf{V a r}_{k}\right), \quad[X / G] \mapsto[X]
$$

$$
\mathrm{BG} \mapsto 1, \quad\left[\mathbb{A}_{k}^{1} / G\right] \mapsto q, \quad\left[\mathbb{G}_{m} / G\right] \mapsto q-1, \quad\left[\operatorname{AGL}_{1}(k) / G\right] \mapsto q(q-1)
$$

Obtain $\left[R_{\mathrm{AGL}_{1}(k)}\left(\Sigma_{g}\right)\right]$ from $\left[\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right]$ by 'forgetting G-action'

$$
K\left(\mathbf{S t c k}_{\mathrm{BG}}\right) \rightarrow K\left(\mathbf{V a r}_{k}\right), \quad[X / G] \mapsto[X]
$$

$$
\mathrm{BG} \mapsto 1, \quad\left[\mathbb{A}_{k}^{1} / G\right] \mapsto q, \quad\left[\mathbb{G}_{m} / G\right] \mapsto q-1, \quad\left[\mathrm{AGL}_{1}(k) / G\right] \mapsto q(q-1)
$$

Similarly,

- for any $H \subset G$, fixed points

$$
(-)^{H}: K\left(\mathbf{S t c k}_{\mathrm{BG}}\right) \rightarrow K\left(\mathbf{V a r}_{k}\right), \quad[X / G] \mapsto\left[X^{H}\right]
$$

- free/transitive locus
- stabilizers

In particular, for $G=\mathrm{AGL}_{1}(k)$, obtain class GIT quotient via

$$
\chi_{G}\left(\Sigma_{g}\right) \simeq\left(R_{G}\left(\Sigma_{g}\right)\right)^{H}
$$

with $H=\{$ diagonals $\} \subset \mathrm{AGL}_{1}(k)$.

Hence, $(-)^{H}: K\left(\mathbf{S t c k}_{\mathrm{BG}}\right) \rightarrow K\left(\mathbf{V a r}_{k}\right)$ with

$$
\mathrm{BG} \mapsto 1, \quad\left[\mathbb{A}_{k}^{1} / G\right] \mapsto 1, \quad\left[\mathbb{G}_{m} / G\right] \mapsto 0, \quad\left[\mathrm{AGL}_{1}(k) / G\right] \mapsto 0
$$

Remarks computations

Remarks computations

- All stratifications should be G-equivariant

$$
\left[\mathrm{SL}_{2}(k)\right]=\{a=0\}+\{a \neq 0\}
$$

Remarks computations

- All stratifications should be G-equivariant

$$
\left[\mathrm{SL}_{2}(k)\right]=\{a=0\}+\{a \neq 0\}
$$

- Write

$$
\left.\{,-1\}=0 \quad \frac{0}{0} \circ \frac{0}{0} 1\right\}
$$

Remarks computations

- All stratifications should be G-equivariant

$$
\left[\mathrm{SL}_{2}(k)\right]=\{a=0\}+\{a \neq 0\}
$$

- Write

- Advantage: can easily generalize to parabolic case

Tool 1 If $H \subset G$ subgroup, then

$$
\begin{gathered}
K\left(\mathbf{S t c k}_{\mathbf{B H}}\right) \rightarrow K\left(\mathbf{S t c k}_{\mathbf{B G}}\right) \\
{[Y / H] \mapsto\left[\left(G \times_{H} Y\right) / G\right]}
\end{gathered}
$$

is a $K\left(\mathbf{S t c k}_{k}\right)$-module morphism.

Tool 1 If $H \subset G$ subgroup, then

$$
\begin{gathered}
K\left(\mathbf{S t c k}_{\mathbf{B H}}\right) \rightarrow K\left(\mathbf{S t c k}_{\mathbf{B G}}\right) \\
{[Y / H] \mapsto\left[\left(G \times_{H} Y\right) / G\right]}
\end{gathered}
$$

is a $K\left(\mathbf{S t c k}_{k}\right)$-module morphism.

Example

$$
\begin{gathered}
G=\mathbb{G}_{m} \text { acts on } X=\mathbb{A}^{1}-\{0\} \text { by } t \cdot x=t^{2} x, \\
\text { then } Y=\{1\} \text { with } H=\mathbb{Z} / 2 \mathbb{Z} .
\end{gathered}
$$

Tool 2 Suppose

$$
\begin{aligned}
& X \stackrel{2: 1}{\longleftarrow} X^{\prime} \xlongequal{\sim} F \times B^{\prime} \\
& \downarrow \downarrow \\
& B \stackrel{2: 1}{\longleftarrow} B^{\prime}
\end{aligned}
$$

then $X \simeq\left(F \times B^{\prime}\right) / /(\mathbb{Z} / 2 \mathbb{Z})$

Tool 2 Suppose

$$
\begin{aligned}
& X \stackrel{2: 1}{\longleftarrow} X^{\prime} \xlongequal{\sim} F \times B^{\prime} \\
& \downarrow \downarrow \\
& B \stackrel{2: 1}{\longleftarrow} B^{\prime}
\end{aligned}
$$

then $X \simeq\left(F \times B^{\prime}\right) / /(\mathbb{Z} / 2 \mathbb{Z})$

Theorem

$$
e(X)=e(F)^{+} e(B)^{+}+e(F)^{-} e(B)^{-}
$$

with $\quad e(T)^{+}=e(T / /(\mathbb{Z} / 2 \mathbb{Z})) \quad$ and $\quad e(T)^{-}=e(T)-e(T)^{+}$

For stacks,

$$
[X / G]^{+}=[(X / / \mathbb{Z} / 2 \mathbb{Z}) / G], \quad[X / G]^{-}=[X / G]-[X / G]^{+}
$$

Theorem [González-Prieto, Hablicsek, Vogel]

$$
[T \times X / G]^{+}=[T]^{+}[X / G]^{+}+[T]^{-}[X / G]^{-}
$$

for $[T] \in \mathcal{V}$, with $\mathcal{V} \subset K\left(\operatorname{Stck}_{\mathrm{B}(\mathbb{Z} / 2 \mathbb{Z})}\right)$ a subring, containing at least

- $T=\mathbb{P}^{n}$ (any $\mathbb{Z} / 2 \mathbb{Z}$-action)
- $T=\mathbb{Z} / 2 \mathbb{Z}$
- $T=B(\mathbb{Z} / 2 \mathbb{Z})$

Currently: working on the case $G=\mathrm{SL}_{2}(\mathbb{C}) \ldots$

