Virtual Classes of Character Stacks

Jesse Vogel

Leiden University

3 March, 2022

1/22

Representation varieties

- M = connected closed manifold
- $\pi_1(M)$ = fundamental group
- G = algebraic group over k

G-representation variety of M $R_G(M) = \text{Hom}(\pi_1(M), G)$

Note: *G* acts on $R_G(M)$ by conjugation $(g \cdot \rho = g\rho g^{-1})$

Note: G acts on $R_G(M)$ by conjugation $(g \cdot \rho = g\rho g^{-1})$

1. GIT quotient, $\operatorname{Spec}(R) / G = \operatorname{Spec}(R^G)$

Character variety $\chi_G(M) = R_G(M) /\!\!/ G$

Note: G acts on $R_G(M)$ by conjugation $(g \cdot \rho = g\rho g^{-1})$

1. GIT quotient, $\operatorname{Spec}(R) / G = \operatorname{Spec}(R^G)$

Character variety $\chi_G(M) = R_G(M) /\!\!/ G$

Non-Abelian Hodge Theory: for smooth complex projective curve C, and $G = GL_n(\mathbb{C})$,

Character stack
$$\mathfrak{X}_G(M) = [R_G(M)/G]$$

Character stack
$$\mathfrak{X}_G(M) = [R_G(M)/G]$$

 \blacksquare Sets of points \rightsquigarrow groupoids of points

Character stack
$$\mathfrak{X}_G(M) = [R_G(M)/G]$$

- \blacksquare Sets of points \leadsto groupoids of points
- Definition quotient stack

$$[X/G](T) = \left\{ \begin{array}{c} P \xrightarrow{G-\text{equiv}} X \\ \downarrow_{\pi} \\ T \end{array} \right\}$$

Character stack
$$\mathfrak{X}_G(M) = [R_G(M)/G]$$

- \blacksquare Sets of points \rightsquigarrow groupoids of points
- Definition quotient stack

$$[X/G](T) = \left\{ \begin{array}{c} P \xrightarrow{G-\text{equiv}} X \\ \downarrow_{\pi} \\ T \end{array} \right\}$$

G-equivariant geometry

Study by additive/motivic invariants:

 $\mu : \operatorname{Var}_k(\operatorname{or} \operatorname{Stck}_k) \to R$

such that $\mu(X) = \mu(Z) + \mu(X \setminus Z)$ for closed $Z \subset X$

Study by additive/motivic invariants:

 $\mu : \operatorname{Var}_k(\operatorname{or} \operatorname{Stck}_k) \to R$

such that $\mu(X) = \mu(Z) + \mu(X \setminus Z)$ for closed $Z \subset X$

Examples

- Euler characteristic $\chi(X) \in \mathbb{Z}$,
- Points over finite fields $\#X(\mathbb{F}_q) \in \mathbb{Z}$
- Deligne–Hodge polynomial

$$e(X) = \sum_{k,p,q} (-1)^k h_c^{k;p,q}(X) u^p v^q \in \mathbb{Z}[u,v].$$

Grothendieck ring of varieties / stacks

$$K(\mathbf{Var}_k) = \bigoplus_{\text{isom. cl. } [X]} \mathbb{Z} \cdot [X] \Big/ \sim$$

- (scissor) $[X] = [Z] + [X \setminus Z]$ for closed $Z \subset X$
- (multiplication) $[X] \cdot [Y] = [X \times_k Y]$
- $[\mathcal{Q}] = 0$ and $[\operatorname{Spec}(k)] = 1$

Grothendieck ring of varieties / stacks

$$K(\mathbf{Var}_k) = \bigoplus_{\text{isom. cl. } [X]} \mathbb{Z} \cdot [X] \Big/ \sim$$

- (scissor) $[X] = [Z] + [X \setminus Z]$ for closed $Z \subset X$
- (multiplication) $[X] \cdot [Y] = [X \times_k Y]$

•
$$[\varnothing] = 0$$
 and $[\operatorname{Spec}(k)] = 1$

$$\mathsf{Var}_k \longrightarrow K(\mathsf{Var}_k) \xrightarrow[\mu]{e} \mathbb{Z}[u,v]$$

Example
$$SL_2(k) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc = 1 \right\}$$

7/22

Example
$$SL_2(k) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc = 1 \right\}$$

$$[\mathsf{SL}_2(k)] = \{a = 0\} + \{a \neq 0\}$$

7/22

Example
$$SL_2(k) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc = 1 \right\}$$

$$[\mathsf{SL}_2(k)] = \{a = 0\} + \{a \neq 0\}$$

 $= \ \{d \in k\} \cdot \{c = -b^{-1}\} \ + \ \{d = (1+bc)/a\}$

Example
$$SL_2(k) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc = 1 \right\}$$

$$[\mathsf{SL}_2(k)] = \{a = 0\} + \{a \neq 0\}$$

$$= \{d \in k\} \cdot \{c = -b^{-1}\} + \{d = (1 + bc)/a\}$$

$$= q(q-1) + q^2(q-1)$$

$$= q^3 - q$$

with $q = [\mathbb{A}^1_k]$

First goal: compute class of $[R_G(\Sigma_g)]$ in $K(Var_k)$

Later: compute class of $[\mathfrak{X}_G(\Sigma_g)]$

Idea: cut manifold in pieces and 'compute invariant piecewise'

Using Topological Quantum Field Theory

 $Z:\mathbf{Bdp}_n\to R\mathbf{-Mod}$

Category of (pointed) bordisms Bdp_n

- Objects (M, A) e.g. () \varnothing
- Morphisms (W, A) e.g. () ()
- Composition: glue along common boundary

e.g.
$$(1) \circ (2 - 1) \circ (2) = (2 - 1) \circ (2)$$

Define TQFT $Z : \mathbf{Bdp}_2 \to K(\mathbf{Var}_k)$ -Mod

$Z: \operatorname{\mathsf{Bdp}}_n \to K(\operatorname{\mathsf{Var}}_k)\operatorname{\mathsf{-Mod}}$

Closed surface $\Sigma_q : \emptyset \to \emptyset$, so by (lax) monoidality

 $Z(\Sigma_g): Z(\varnothing) \to Z(\varnothing)$

For us, $Z(\Sigma_g)(1) = [R_G(\Sigma_g)] \in K(\mathsf{Var}_k)$

$$[R_G(\Sigma_g)] = \frac{1}{[G]^g} Z(\bigcirc) \circ Z(\bigcirc)^g \circ Z(\bigcirc)(1)$$

and it remains to compute $Z(\underbrace{)})$

$$[R_G(\Sigma_g)] = \frac{1}{[G]^g} Z(\textcircled{}) \circ Z(\textcircled{})^g \circ Z(\textcircled{})^g)$$

and it remains to compute $Z(\underbrace{)})$

• Current results: SL₂, \mathbb{T}_n and \mathbb{U}_n for n = 2, 3, 4 (and 5)

$$[R_G(\Sigma_g)] = \frac{1}{[G]^g} Z(\textcircled{}) \circ Z(\textcircled{})^g \circ Z(\textcircled{})^g)$$

and it remains to compute $Z(\underbrace{)})$

- Current results: SL₂, \mathbb{T}_n and \mathbb{U}_n for n = 2, 3, 4 (and 5)
- Generalizations: can be extended to parabolic settings, non-orientable surfaces

Stacky TQFT

Replace
$$K(\operatorname{Var}_k) \longmapsto K(\operatorname{Stck}_{\operatorname{BG}})$$

 $R_G(X) \longmapsto \mathfrak{X}_G(X)$

to obtain $\mathcal{Z} : \mathbf{Bdp}_n \to K(\mathbf{Stck}_{\mathbf{BG}})\text{-}\mathbf{Mod}$

$$[\mathfrak{X}_G(\Sigma_g)] = \frac{1}{[G/G]^g} \ \mathcal{Z}(\bigcirc) \circ \ \mathcal{Z}(\bigcirc)^g \circ \ \mathcal{Z}(\bigcirc)(1)$$

$$\mathsf{AGL}_1(k) = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \right\}$$

Theorem [González-Prieto, Hablicsek, Vogel, arXiv:2201.08699]

The virtual class of the character stack $[\mathfrak{X}_{\mathsf{AGL}_1(k)}(\Sigma_g)]$ equals

$$\begin{split} \mathbf{BG} &+ ((q-1)^{2g}-1)[\mathbb{A}_k^1/G] + \frac{q^{2g}-1}{q-1}[\mathbb{G}_m/G] \\ &+ \frac{\left(q^{2g-2}-1\right)\left((q-1)^{2g}-1\right)}{q-1}[\mathbf{AGL}_1(k)/G] \end{split}$$

3 March, 2022 14 / 22

Obtain $[R_{AGL_1(k)}(\Sigma_g)]$ from $[\mathfrak{X}_G(\Sigma_g)]$ by 'forgetting *G*-action'

 $K(\mathsf{Stck}_{\mathsf{BG}}) \to K(\mathsf{Var}_k), \quad [X/G] \mapsto [X]$

 $\mathsf{BG} \mapsto 1, \quad [\mathbb{A}^1_k/G] \mapsto q, \quad [\mathbb{G}_m/G] \mapsto q-1, \quad [\mathsf{AGL}_1(k)/G] \mapsto q(q-1)$

Obtain $[R_{AGL_1(k)}(\Sigma_g)]$ from $[\mathfrak{X}_G(\Sigma_g)]$ by 'forgetting *G*-action'

 $K(\mathsf{Stck}_{\mathsf{BG}}) \to K(\mathsf{Var}_k), \quad [X/G] \mapsto [X]$

 $\mathsf{BG} \mapsto 1, \quad [\mathbb{A}^1_k/G] \mapsto q, \quad [\mathbb{G}_m/G] \mapsto q-1, \quad [\mathsf{AGL}_1(k)/G] \mapsto q(q-1)$

Similarly,

• for any $H \subset G$, fixed points

$$(-)^H : K(\mathsf{Stck}_{\mathsf{BG}}) \to K(\mathsf{Var}_k), \quad [X/G] \mapsto [X^H]$$

- free/transitive locus
- stabilizers

In particular, for $G = AGL_1(k)$, obtain class GIT quotient via

$$\chi_G(\Sigma_g) \simeq (R_G(\Sigma_g))^H,$$

with $H = \{ diagonals \} \subset AGL_1(k)$.

Hence,
$$(-)^H : K(\operatorname{Stck}_{\operatorname{BG}}) \to K(\operatorname{Var}_k)$$
 with
 $\operatorname{BG} \mapsto 1, \quad [\mathbb{A}^1_k/G] \mapsto 1, \quad [\mathbb{G}_m/G] \mapsto 0, \quad [\operatorname{AGL}_1(k)/G] \mapsto 0.$

All stratifications should be G-equivariant

$$[\mathsf{SL}_2(k)] = \{a = 0\} + \{a \neq 0\}$$

All stratifications should be G-equivariant

$$[\mathsf{SL}_2(k)] = \{a = 0\} + \{a \neq 0\}$$

• Write
$$(\underline{y}_{\bullet\bullet}, \underline{y}) = (\underline{y}_{\bullet}, \underline{y}) \circ (\underline{y}_{\bullet}, \underline{y})$$

All stratifications should be G-equivariant

$$[\mathsf{SL}_2(k)] = \{a = 0\} + \{a \neq 0\}$$

• Write
$$(\underline{)}_{\bullet\bullet\bullet}^{\bullet} = (\underline{)}_{\bullet} \circ (\underline{)}_{\bullet\bullet\bullet}^{\bullet}$$

Advantage: can easily generalize to parabolic case

Tool 1 If $H \subset G$ subgroup, then

 $K(\mathsf{Stck}_{\mathsf{BH}}) \to K(\mathsf{Stck}_{\mathsf{BG}})$

 $[Y/H] \mapsto [(G \times_H Y)/G]$

is a $K(\mathbf{Stck}_k)$ -module morphism.

Tool 1 If $H \subset G$ subgroup, then

 $K(\mathsf{Stck}_{\mathsf{BH}}) \to K(\mathsf{Stck}_{\mathsf{BG}})$

 $[Y/H] \mapsto [(G \times_H Y)/G]$

is a $K(\mathbf{Stck}_k)$ -module morphism.

Example

$$G = \mathbb{G}_m$$
 acts on $X = \mathbb{A}^1 - \{0\}$ by $t \cdot x = t^2 x$,
then $Y = \{1\}$ with $H = \mathbb{Z}/2\mathbb{Z}$.

Tool 2 Suppose

$$\begin{array}{cccc} X & \xleftarrow{2:1} & X' & \xrightarrow{\sim} & F \times B' \\ \downarrow & & \downarrow \\ B & \xleftarrow{2:1} & B' \end{array}$$

then $X \simeq (F \times B') /\!\!/ (\mathbb{Z}/2\mathbb{Z})$

Tool 2 Suppose

$$\begin{array}{cccc} X & \xleftarrow{2:1} & X' & \xrightarrow{\sim} & F \times B' \\ \downarrow & & \downarrow \\ B & \xleftarrow{2:1} & B' \end{array}$$

then $X \simeq (F \times B') /\!\!/ (\mathbb{Z}/2\mathbb{Z})$

Theorem

$$e(X) = e(F)^+ e(B)^+ + e(F)^- e(B)^-$$

with $e(T)^+ = e(T / (\mathbb{Z}/2\mathbb{Z}))$ and $e(T)^- = e(T) - e(T)^+$

For stacks,

 $[X/G]^+ = [(X \parallel \mathbb{Z}/2\mathbb{Z})/G], \qquad [X/G]^- = [X/G] - [X/G]^+$

Theorem [González-Prieto, Hablicsek, Vogel]

$$[T \times X/G]^+ = [T]^+ [X/G]^+ + [T]^- [X/G]^-$$

for $[T] \in \mathcal{V}$, with $\mathcal{V} \subset K(\mathbf{Stck}_{\mathbf{B}(\mathbb{Z}/2\mathbb{Z})})$ a subring, containing at least

- $T = \mathbb{P}^n$ (any $\mathbb{Z}/2\mathbb{Z}$ -action)
- $T = \mathbb{Z}/2\mathbb{Z}$
- $T = B(\mathbb{Z}/2\mathbb{Z})$

Currently: working on the case $G = SL_2(\mathbb{C}) \dots$

Jesse Vogel